The Remez exchange algorithm for approximation with linear restrictions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Remez Exchange Algorithm for Approximation with Linear Restrictions

This paper demonstrates a Remez exchange algorithm applicable to approximation of real-valued continuous functions of a real variable by polynomials of degree smaller than n with various linear restrictions. As special cases are included the notion of restricted derivatives approximation (examples of which are monotone and convex approximation and restricted range approximation) and the notion ...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Acceleration of the Remez Exchange Algorithm for the Design of L , Optimum FIR Filters

Iii this paper a iieiv initialization scheme for tlie Reinez exchange algorithm is proposed. More specifically. tlie solution of the well Bnowii “don’t. care” filt,er design method is proposed as a iiew efficient iiiit,ializat,ioii scheiiie for t,he Reinez algorit,hm. Our proposal is inotivated by the fact that the “don’t care” least squares optiiiiuiii solution satisfies the oiie of the two ba...

متن کامل

Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design

One of the main advantages of the linear-phase FIR filters over their IIR counterparts is the fact that there exist efficient algorithms for optimizing the arbitrary-magnitude FIR filters in the minimax sense. In case of IIR filters, the design of arbitrary-magnitude filters is usually time-consuming and the convergence to the optimum solution is not always guaranteed. The most efficient method...

متن کامل

The Remez Inequality for Linear Combinations of Shifted Gaussians

Let Gn := ( f : f(t) = n X j=1 aje −(t−λj) , aj , λj ∈ R ) . In this paper we prove the following result. Theorem (Remez-Type Inequality for Gn). Let s ∈ (0,∞). There is an absolute constant c1 > 0 such that exp(c1(min{ns, ns2} + s)) ≤ sup f ‖f‖R ≤ exp(240(min{n1/2s, ns2} + s)) , where the supremum is taken for all f ∈ Gn satisfying m ({t ∈ R : |f(t)| ≥ 1}) ≤ s . We also prove the right higher ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1976

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1976-0440868-7